Python Data Science Handbook. Essential Tools for Working with Data
2nd edition

Par : Jake VanderPlas
  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay entre le 2 juillet et le 8 juillet
      Cet article sera commandé chez un fournisseur et sera expédié 6 à 12 jours après la date de votre commande.
    • Retrait Click and Collect en magasin gratuit
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages563
  • PrésentationBroché
  • FormatGrand Format
  • Poids1.03 kg
  • Dimensions17,7 cm × 23,3 cm × 3,2 cm
  • ISBN978-1-0981-2122-8
  • EAN9781098121228
  • Date de parution01/01/2023
  • ÉditeurO'Reilly

Résumé

Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all - IPython, NumPy, pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues : manipulating, transforming, and cleaning data ; visualizing different types of data ; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how : IPython and Jupyter provide computational environments for scientists using Python ; NumPy includes the ndarray for efficient storage and manipulation of dense data arrays ; Pandas contains the DataFrame for efficient storage and manipulation of labeled/columnar data : Matplotlib includes capabilities for a flexible range of data visualizations ; Scikit-Learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms.
Python is a first-class tool for many researchers, primarily because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the new edition of Python Data Science Handbook do you get them all - IPython, NumPy, pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find the second edition of this comprehensive desk reference ideal for tackling day-to-day issues : manipulating, transforming, and cleaning data ; visualizing different types of data ; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you'll learn how : IPython and Jupyter provide computational environments for scientists using Python ; NumPy includes the ndarray for efficient storage and manipulation of dense data arrays ; Pandas contains the DataFrame for efficient storage and manipulation of labeled/columnar data : Matplotlib includes capabilities for a flexible range of data visualizations ; Scikit-Learn helps you build efficient and clean Python implementations of the most important and established machine learning algorithms.
Python pour la data science
Jake VanderPlas
E-book
26,99 €