Methodes De Monte Carlo Par Chaines De Markov

Par : Christian Robert

Formats :

  • Paiement en ligne :
    • Livraison à domicile ou en point Mondial Relay entre le 24 juin et le 25 juin
      Cet article sera commandé chez un fournisseur et vous sera envoyé 3 à 6 jours après la date de votre commande.
    • Retrait Click and Collect en magasin gratuit
  • Réservation en ligne avec paiement en magasin :
    • Indisponible pour réserver et payer en magasin
  • Nombre de pages350
  • PrésentationBroché
  • Poids0.605 kg
  • Dimensions15,5 cm × 24,0 cm × 2,1 cm
  • ISBN2-7178-3154-1
  • EAN9782717831542
  • Date de parution01/08/1996
  • CollectionStatistique mathématique
  • ÉditeurEconomica

Résumé

La simulation est devenue dans la dernière décennie un outil essentiel du traitement statistique de modèles complexes et de la mise en œuvre de techniques statistiques avancées, comme le bootstrap ou les méthodes d'inférence simulée. Ce livre présente les éléments de base de la simulation de lois de probabilité (génération de variables uniformes et de lois usuelles) et de leur utilisation en Statistique (intégration de Monte Carlo, optimisation stochastique). Après un bref rappel sur les chaînes de Markov, les techniques plus spécifiques de Monte Carlo par chaînes de Markov (MCMC) sont présentées en détail, à la fois du point de vue théorique (validité et convergence) et du point de vue de leur implémentation (accélération, choix de paramètres, limitations). Les algorithmes d'échantillonnage de Gibbs sont ainsi distingués des méthodes générales de Hastings-Metropolis par leur plus grande richesse théorique. Les derniers chapitres contiennent un exposé critique sur l'état de l'art en contrôle de convergence de ces algorithmes et une présentation unifiée des diverses applications des méthodes MCMC aux modèles à données manquantes. De nombreux exemples statistiques illustrent les méthodes présentées dans cet ouvrage destiné aux étudiants de deuxième et troisième cycles universitaires en Mathématiques Appliquées ainsi qu'aux chercheurs et praticiens désirant utiliser les méthodes MCMC.
La simulation est devenue dans la dernière décennie un outil essentiel du traitement statistique de modèles complexes et de la mise en œuvre de techniques statistiques avancées, comme le bootstrap ou les méthodes d'inférence simulée. Ce livre présente les éléments de base de la simulation de lois de probabilité (génération de variables uniformes et de lois usuelles) et de leur utilisation en Statistique (intégration de Monte Carlo, optimisation stochastique). Après un bref rappel sur les chaînes de Markov, les techniques plus spécifiques de Monte Carlo par chaînes de Markov (MCMC) sont présentées en détail, à la fois du point de vue théorique (validité et convergence) et du point de vue de leur implémentation (accélération, choix de paramètres, limitations). Les algorithmes d'échantillonnage de Gibbs sont ainsi distingués des méthodes générales de Hastings-Metropolis par leur plus grande richesse théorique. Les derniers chapitres contiennent un exposé critique sur l'état de l'art en contrôle de convergence de ces algorithmes et une présentation unifiée des diverses applications des méthodes MCMC aux modèles à données manquantes. De nombreux exemples statistiques illustrent les méthodes présentées dans cet ouvrage destiné aux étudiants de deuxième et troisième cycles universitaires en Mathématiques Appliquées ainsi qu'aux chercheurs et praticiens désirant utiliser les méthodes MCMC.
La Mort mise en Seine
Christian Robert, Vincent Lissonnet
E-book
6,99 €
Les Dames mortes
Christian Robert, Vincent Lissonnet
E-book
6,99 €
Les Dames mortes
Christian Robert, Vincent Lissonnet
Grand Format
13,00 €