Professeur émérite à Sorbonne Université
Analyse complexe. Fonctions holomorphes d'une variable
Par : ,Formats :
- Paiement en ligne :
- Livraison à domicile ou en point Mondial Relay entre le 24 juin et le 26 juinCet article sera commandé chez un fournisseur et vous sera envoyé 3 à 6 jours après la date de votre commande.
- Retrait Click and Collect en magasin gratuit
- Livraison à domicile ou en point Mondial Relay entre le 24 juin et le 26 juin
- Réservation en ligne avec paiement en magasin :
- Indisponible pour réserver et payer en magasin
- Nombre de pages480
- PrésentationBroché
- FormatGrand Format
- Poids0.819 kg
- Dimensions17,0 cm × 23,9 cm × 2,6 cm
- ISBN978-2-10-081927-0
- EAN9782100819270
- Date de parution21/04/2021
- CollectionSciences Sup. Mathématiques
- ÉditeurDunod
Résumé
L'analyse complexe, qui associe topologie, calcul différentiel, intégration et même algèbre, est un sujet incontournable dont les applications traversent quasiment tous les domaines mathématiques. Cet ouvrage aborde les grands théorèmes fondamentaux de l'analyse complexe en proposant un cours de base solide, sans délaisser les applications pratiques comme le calcul d'intégrales ou l'étude des fonctions spéciales.
Les cinq premiers chapitres correspondent à un cours de niveau L3 sur les fonctions holomorphes, et contiennent strictement le programme de l'agrégation de mathématiques en ce qui concerne l'analyse complexe. Les chapitres suivants correspondent plus spécifiquement aux enseignements de M1 et de M2 (fonctions harmoniques, fonctions classiques, intégration des formes différentielles, noyau de Bergman, théorèmes de Runge, théorèmes de Picard, théorèmes de factorisation, etc).
Les cinq premiers chapitres correspondent à un cours de niveau L3 sur les fonctions holomorphes, et contiennent strictement le programme de l'agrégation de mathématiques en ce qui concerne l'analyse complexe. Les chapitres suivants correspondent plus spécifiquement aux enseignements de M1 et de M2 (fonctions harmoniques, fonctions classiques, intégration des formes différentielles, noyau de Bergman, théorèmes de Runge, théorèmes de Picard, théorèmes de factorisation, etc).
L'analyse complexe, qui associe topologie, calcul différentiel, intégration et même algèbre, est un sujet incontournable dont les applications traversent quasiment tous les domaines mathématiques. Cet ouvrage aborde les grands théorèmes fondamentaux de l'analyse complexe en proposant un cours de base solide, sans délaisser les applications pratiques comme le calcul d'intégrales ou l'étude des fonctions spéciales.
Les cinq premiers chapitres correspondent à un cours de niveau L3 sur les fonctions holomorphes, et contiennent strictement le programme de l'agrégation de mathématiques en ce qui concerne l'analyse complexe. Les chapitres suivants correspondent plus spécifiquement aux enseignements de M1 et de M2 (fonctions harmoniques, fonctions classiques, intégration des formes différentielles, noyau de Bergman, théorèmes de Runge, théorèmes de Picard, théorèmes de factorisation, etc).
Les cinq premiers chapitres correspondent à un cours de niveau L3 sur les fonctions holomorphes, et contiennent strictement le programme de l'agrégation de mathématiques en ce qui concerne l'analyse complexe. Les chapitres suivants correspondent plus spécifiquement aux enseignements de M1 et de M2 (fonctions harmoniques, fonctions classiques, intégration des formes différentielles, noyau de Bergman, théorèmes de Runge, théorèmes de Picard, théorèmes de factorisation, etc).