Machine Learning. Implémentation en Python avec Scikit-learn
Par :Formats :
- Paiement en ligne :
- Livraison à domicile ou en point Mondial Relay entre le 21 juin et le 24 juinCet article sera commandé chez un fournisseur et vous sera envoyé 3 à 6 jours après la date de votre commande.
- Retrait Click and Collect en magasin gratuit
- Livraison à domicile ou en point Mondial Relay entre le 21 juin et le 24 juin
- Réservation en ligne avec paiement en magasin :
- Disponible pour réserver et payer en magasin
- Nombre de pages338
- PrésentationBroché
- FormatGrand Format
- Poids0.67 kg
- Dimensions17,8 cm × 21,6 cm × 2,1 cm
- ISBN978-2-409-04482-3
- EAN9782409044823
- Date de parution17/05/2024
- CollectionExpert IT
- ÉditeurENI (Editions)
Résumé
Ce livre présente à des personnes non Data Scientists, et sans connaissances particulières en mathématiques, la méthodologie du Machine Learning, ses concepts, ses principaux algorithmes et l'implémentation de ceux-ci en Python avec Scikit-learn. Il commence par une présentation du Machine Learning puis de la méthode CRISP où chaque phase est détaillée avec ses différentes étapes. Les premiers chapitres s'intéressent donc aux phases de Business Understanding (compréhension métier), Data Understanding (ou compréhension des données) et de Data Preparation (préparation des données). Dans ces chapitres sont présentés des analyses statistiques de datasets, que cela soit sous forme numérique ou graphique ainsi que les principales techniques utilisées pour la préparation des données, avec leur rôle et des conseils sur leur utilisation. Ensuite, plusieurs chapitres sont dédiés chacun à une tâche de Machine Learning : la classification, la régression, avec le cas particulier de la prédiction, ainsi que le clustering et plus globalement l'apprentissage non supervisé. Pour chaque tâche qui est présentée sont successivement détaillés les critères d'évaluation, les concepts derrière les principaux algorithmes puis leur implémentation avec Scikit-learn. Pour illustrer les différents chapitres, les techniques et algorithmes présentés sont appliqués sur des datasets souvent utilisés : Iris (classification de fleurs), Boston (prévision de prix de vente d'appartements) et Titanic (prévision de la chance de survie des passagers du bateau). Le code Python est commenté et disponible en téléchargement (sous la forme de notebooks Jupyter) sur le site www.editions-eni.fr.
Ce livre présente à des personnes non Data Scientists, et sans connaissances particulières en mathématiques, la méthodologie du Machine Learning, ses concepts, ses principaux algorithmes et l'implémentation de ceux-ci en Python avec Scikit-learn. Il commence par une présentation du Machine Learning puis de la méthode CRISP où chaque phase est détaillée avec ses différentes étapes. Les premiers chapitres s'intéressent donc aux phases de Business Understanding (compréhension métier), Data Understanding (ou compréhension des données) et de Data Preparation (préparation des données). Dans ces chapitres sont présentés des analyses statistiques de datasets, que cela soit sous forme numérique ou graphique ainsi que les principales techniques utilisées pour la préparation des données, avec leur rôle et des conseils sur leur utilisation. Ensuite, plusieurs chapitres sont dédiés chacun à une tâche de Machine Learning : la classification, la régression, avec le cas particulier de la prédiction, ainsi que le clustering et plus globalement l'apprentissage non supervisé. Pour chaque tâche qui est présentée sont successivement détaillés les critères d'évaluation, les concepts derrière les principaux algorithmes puis leur implémentation avec Scikit-learn. Pour illustrer les différents chapitres, les techniques et algorithmes présentés sont appliqués sur des datasets souvent utilisés : Iris (classification de fleurs), Boston (prévision de prix de vente d'appartements) et Titanic (prévision de la chance de survie des passagers du bateau). Le code Python est commenté et disponible en téléchargement (sous la forme de notebooks Jupyter) sur le site www.editions-eni.fr.